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1Carnegie Mellon University 2Facebook AI

ABSTRACT

With increasing interests in interactive speech systems, speech emo-
tion recognition and multi-style text-to-speech (TTS) synthesis are
becoming increasingly important research areas. In this paper, we
combine both. We present a method to extract speech style embed-
dings from input speech queries and apply this embedding as con-
ditional input to a TTS voice so that the TTS response matches the
speaking style of the input query. Specifically, we first train a multi-
modal style classification model using acoustic and textual features
of speech utterances. Due to a limited amount of labeled data, we
combined the emotional recognition dataset: the interactive emo-
tional dyadic motion capture database (IEMOCAP) with a small la-
beled subset of our internal TTS dataset for style model training. We
take the softmax layer from the style classifier as style embedding
and then apply this style embedding extraction model to generate
soft style labels for our unlabelled internal TTS dataset. With this
semi-supervised approach, reliable style embeddings are extracted
to train a multi-style TTS system. As a result, we developed a con-
trollable multi-style TTS system whose response matches the given
target styles embedding, which could be extracted from the input
query or manually assigned.

Index Terms— Text-to-speech synthesis, emotion, style, semi-
supervised

1. INTRODUCTION

Speech is a crucial part of human-computer interactions and high-
quality TTS synthesis plays an important role in mimicking natural
human communications. With recent technology advancements in
speech synthesis [1–3], TTS systems can achieve near human qual-
ity [4]. One popular topic in the recent research of TTS is expres-
sive TTS, which is aiming at achieving controllable style synthesis
in TTS [5–7]. To avoid the difficulty of hand-labeling prosody and
speaking style, style embedding could be extracted using a style en-
coder and concatenated with the textual feature, to guide the atten-
tion module of the synthesizer during training/inference [5, 6]. The
latent styles could also be factorized using a token table [7].

These prosody transfer methods could be used to create an in-
teractive TTS system mimicking the style of the input audio query.
However, to learn specific styles, there are limitations with unsuper-
vised style factorization learning [7]. Since the disentanglement of
different styles is heavily influenced by randomness and the choice
of hyper-parameters [8], the learning of target styles is not con-
trollable. To have interpretable representation learning, some (at
least weak) supervision is in need [8]. Under supervision with ex-
plicit prosody labels, the styles could be learned with clear guid-
ance [9, 10]. But supervised learning requires a large amount of la-
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beled data, giving difficulties in the development of expressive TTS
research and applications.

In [11], an external dataset IEMOCAP [12] is used to train an
emotion classifier and the trained model is then employed to label
previously unlabeled TTS training data: Blizzard 2017 [13]. It pro-
posed a way to enable automatic emotion labeling of the unlabeled
dataset and to produce a controllable TTS. But, the external dataset
IEMOCAP and the synthesis dataset Blizzard 2017 [13] have signifi-
cant differences in background noise, recording environment, speech
quality, etc. With the differences between these two datasets, the
classifier trained using an external dataset may not be well-adapted
to extract representations from the synthesis data. The final emotion
synthesis accuracy is 41% on four emotions [11] evaluated by listen-
ers, while the human judgment accuracy on emotions in real speech
is around 50% reported in [11,14]. Since there are no emotion labels
on the synthesis dataset Blizzard 2017, the prediction accuracy of
the TTS data is not directly evaluated.

In this paper, we propose a semi-supervised approach to learn
reliable style representation on the synthesis dataset. Apart from
making usages of the external IEMOCAP dataset to help the learn-
ing on 4 emotion classes as in [11], we further improve the transfer
learning effect using the labeled subset of our TTS dataset. To in-
crease the quality of the learned style representation and have more
reliable style embedding in the expressive TTS training, we com-
bined the IEMOCAP dataset with the labeled subset of our internal
dataset to create a joint dataset and train a multi-modal style classi-
fication model using this joint dataset. Taking the softmax layer of
the style classifier as style embedding, the classifier serves as a style
embedding extraction model, which lets us then generate style em-
bedding for our unlabelled internal TTS dataset. By using the style
embedding as additional auxiliary features for the TTS system, we
could train a controllable multi-style TTS system that learns to re-
spect given target styles. During speech synthesis, style embedding
could be extracted from the input speech query and fed into our TTS
system, which will then produce its response in matching styles as
the input query. As a result, we developed a novel interactive multi-
style TTS system. The multi-style TTS system is evaluated using
comprehensive subjective experiments.

2. RELATED WORK

2.1. Expressive TTS

Expressive TTS has been studied for years from the HMM-based
synthesis using style modeling with control vector [15–17] to the
state-of-the-art prosody transfer expressive TTS work [5–7]. In [7],
a token table is learned through the ”style token layer” to represent
a variety of prosodic dimensions. Furthermore, controllable TTS is
discussed in [10] for the emotion nuances style learning. In [11], an
external dataset is used to help the learning of control dimensions
in the TTS dataset. In their work, they used statistical parametric
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Fig. 1. Style embedded TTS framework

speech synthesis (SPSS) with the control vector as an auxiliary input
feature to drive their expressive TTS system.

2.2. Emotion recognition

Early approaches on emotion recognition mostly have been inspired
by psychology studies [18, 19]. Recently, deep neural networks
(DNNs) have first been used to learn high-level representations for
utterance-level emotion recognition [20]. Trigeorgis et al. further
applied convolutional neural networks (CNNs) to model context-
aware emotion-relevant features, which are then combined with long
term-short memory (LSTM) networks aiming towards end-to-end
emotion modeling [21]. Fundamentally, the expression of emotions
is usually conveyed through multi-modal behavior channels, includ-
ing speech, language, body gestures, or facial expressions. Thus,
emotion recognition is often formulated as a classification prob-
lem of utterances using these multi-modal signals. [22] proposed
a multi-modal dual recurrent encoder to simultaneously model the
dynamics of both text and audio signals within an utterance to pre-
dict emotion classes. This architecture has achieved state-of-the-art
performance on IEMOCAP [12] dataset which is a multi-modal
emotion dataset and has been widely used in the affective computing
community. In this work, our speech style recognizer is built based
on this architecture.

3. MODELS AND FRAMEWORKS

Figure 1 shows the architecture of the expressive TTS system. It
consists of a standalone style embedding extraction component that
generates the style embedding from audio input, and a TTS frame-
work which takes the style embedding as input and synthesizes the
response in matching style.

3.1. Semi-supervised style learning

The multimodal dual recurrent encoder (MDRE) model we used for
speech style classification is adapted from the state-of-the-art emo-
tion recognition model introduced in [22]. As shown in Figure 2, the
model is composed of two separate recurrent encoders for audio and
text modeling, respectively. The audio model uses Mel-frequency
Cepstral Coefficients (MFCC) features and utterance level prosody
feature as inputs and the text model uses token representations as de-
scribed in [22]. The audio encoder output is concatenated with the
text encoder output, then fed into a fully-connected layer to produce
the final classification. We changed the loss function from sigmoid
cross-entropy to softmax cross-entropy as it produced significantly
better results for our training task.
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Fig. 2. Multimodal style classifier

Since our internal dataset is only partially labeled, we train the
semi-supervised style classifier using the labeled portion and then in-
fer the rest of the dataset’s style embedding using this classifier. The
style embedding we chose to compare are 1) the bottleneck layer
feature before the final prediction 2) the final softmax features. Dur-
ing the experiments, we found the softmax layer output works better.
This feature also has the added advantage that it can be interpreted
as a probability representation of different speaking styles. The soft-
max feature as embedding is shown in Figure 2.

3.2. Style embedded TTS system

As shown in Figure 1, our TTS pipeline is a multi-model framework
that consists of a text-processing frontend, a set of prosody models,
acoustic models and a neural vocoder. This framework is ideal for
controllable expressive speech synthesis because it separates speech
style modeling from speech audio modeling. Specifically, the input
text is first converted to linguistic features. Then, the linguistic fea-
tures along with any conditional features such as style embedding,
speaker ID are used to produce the prosody features such as duration
and F0. Linguistic features combined with prosody features are used
to generate spectral acoustic features and, at the last stage, a con-
ditional neural vocoder takes in the spectral features to synthesize
the audio waveform. The speaking style of the synthesized speech is
controlled by the conditional style embedding feature. During infer-
ence, we would use the style classifier to extract the style embedding
from a short speech segment as the input query or manually assigned.
In an interactive speech system, this speech segment can be the input
utterance from a user.

4. EXPERIMENTS

4.1. Datasets

4.1.1. Internal dataset

The internal TTS dataset was recorded in voice production studio by
multiple professional voice talents. It has balanced phonemic and
textual information and the sampling rate is 48kHz. Only a small
subset of the internal dataset has style labels. In addition to the
IEMOCAP styles, the internal data has two more styles: fast and
soft. Details of the data are summarized in Table1. These utterances
are used to train a multi-speaker style classifier. During the synthe-
sis, only one speaker’s voice is used which has 40,244 utterances
with only around 3000 utterances labeled. The style representations
are extracted on the rest of this single speaker dataset and used in the
TTS training.



Table 1. Total dataset style labels statistics

Dataset Split Fast Soft Neutral Happy Angry Sad

Internal

Train
Dev
Test
All

1145
105
124

1374

1814
161
220

2195

4481
439
506
5426

885
79
93

1057

140
13
17
170

35
3
2

40

IEMOCAP

Train
Dev
Test
All

–
–
–
–

–
–
–
–

1390
100
218
1708

1307
90
239

1636

865
61
177

1103

883
62
139

1084

4.1.2. IEMOCAP dataset

To compensate for the limited amount of labeled data in our internal
dataset, we chose an open-source dataset, IEMOCAP [12], which
is widely used for emotion recognition, to complement our training
data. In this dataset, both video and audio were recorded from ten
actors in dyadic sessions under both scripted and spontaneous com-
munication scenarios. The dataset contains 12.5 hours of recordings
with a sampling rate of 22kHz. It has utterance-wise emotion labels
such as neutral, happy, sad, anger, surprise, etc. To be consistent
with former research [11, 22] and also be suitable for our own inter-
action goal, we select the following emotions in our study: neutral,
happy, sad and angry. Similar to the approach in [22], we merge
utterances with excited emotion with those of happy emotion.

4.2. Implementation details

The style classification model is adapted from [22] and is shown in
Figure 2. Specifically, we set the batch normalization layer with 0.9
momentum to help cross-domain adaptation. To compensate for the
imbalance among style labels, we weighted the by-class loss func-
tion with an inverse of the style label prior while capping the neutral
label prior as 0.25. In addition, AdaBN [23] is implemented in this
model to boost domain adaptation performance between the internal
and external datasets.

The multi-style TTS system is trained using the internal dataset
with style embedding features as conditional input features. The
style embedding labels were generated by passing each utterance
through the style classification model as described in Section 3.1.
In the synthesis phase, the style embedding features could be au-
tomatically extracted from input query or manually assigned as a
combination of different styles.

5. RESULTS

5.1. Style classification

In the style classification task, we first tested the style classifier’s
model performance on the IEMOCAP train/test split. It achieves an
overall accuracy of 72.7% which is similar to the reported state-of-
the-art [22]. The confusion matrix is shown in Figure 3. To improve
the embedding quality on the internal dataset, the IEMOCAP dataset
and the labeled subset of the internal dataset were combined during
training. The results show that the style classifier achieves 91.4%
overall accuracy and 71.5% weighted accuracy on the internal la-
beled dataset. Figure 4 shows the confusion matrix on the internal
dataset validation set. The number of utterances among different
classes are unbalanced, with the neutral class having the most num-
ber of utterances, as shown in Table 1. With a lack of labelled data in
anger and sadness in the internal dataset, the prediction accuracy on

Fig. 3. Confusion matrix on IEMOCAP data

these two classes are not high. The style classification accuracy de-
creased slightly on the IEMOCAP dataset after joint training, likely
due to mismatch between the internal and IEMOCAP datasets.

To choose the best input features, we have also done feature nor-
malization experiments. The normalization is done corpus-wise to
compensate for the domain difference between our internal dataset
and the IEMOCAP dataset. Table 3 shows that normalizing both
MFCC and prosody provides the best classification accuracy on the
internal dataset’s validation set. So in the final model, we normalized
both MFCC features and prosody features. The final classification
accuracy for the internal dataset is in Table 2.

Fig. 4. Confusion matrix on internal labeled data

5.2. Multi-style TTS with conditional style embedding

To evaluate our expressive TTS’s performance, we collected subjec-
tive evaluation responses from 22 subjects. As reported in [11, 14,
24], the human perception on the emotions of natural speech is only
around 50%, showing the ambiguity of emotion perception. Hence,
instead of evaluating the subjective style accuracy on the multi-style
synthesis results, we are doing the ABX test and preference test. The
demo page for our system’s synthesis results is at [25].



Table 2. Style classification on internal data

Dataset Trick Neutral Fast Soft Happy Angry Sad Accuracy
Weighted Unweighted

Train BN
AdaBN

0.984
0.953

0.871
0.847

0.964
0.918

0.892
0.903

0.176
0.353

0.0
0.0

0.779
0.915

0.973
0.957

Dev BN
AdaBN

0.979
0.927

0.819
0.8

0.994
0.963

0.81
0.873

0.385
0.538

0.0
0.333

0.686
0.766

0.931
0.904

Test BN
AdaBN

0.984
0.953

0.871
0.847

0.964
0.918

0.892
0.903

0.176
0.353

0.0
0.0

0.683
0.715

0.940
0.914

Table 3. Feature selection

Features Accuracy
Weighted Unweighted

Unnormalized 0.726 0.875

Normalized MFCC 0.673 0.840

Normalized prosody 0.494 0.62

Normalized both 0.766 0.904

Table 4. Subjective Preferences

Baseline Neutral Style Other Styles

Preference (%) 28.0 54.2 17.8

5.2.1. ABX test and preference score

We designed the ABX test as follows. With two different styles, we
randomly chose an example from each style. Let’s call these two
examples A and B. We also choose a different sample X from one
of these two styles and call it the references style. The listener will
decide which of A, B has the same style as the reference X. We
prepared 15 such tests. The aggregated results gave an 82.42% ac-
curacy, showing the styles can be distinguished between classes.
For preference score test, we asked the listeners to choose between
three styles synthesized with the same text: baseline TTS model (i.e.,
TTS without style embedding), neutral style and other hand-chosen
styles. As in the conclusion in [11], the listeners prefer appropriate
variation over random variation. So we manually assign soft style
labels (not neutral style) in the inference to accompany the text infor-
mation in that utterance. The evaluation results are shown in Table
4. The neutral style created by our system is the best accepted by the
listeners, showing training the TTS with style labels can improve the
quality of synthesis results. However, the other hand-picked styles
are not best-accepted by listeners who refer to the neutral style as
more peaceful and relaxing, which might be influenced by the F0
preference. This may be further improved by disentangling F0 with
prosody variation in future studies.

Table 5. TTS data F0 statistics

Style F0 Count

Angry 195.5±30.8 6817

Happy 214.8±37.3 3576

Sad 197.3±30.8 5137

Neutral 183.7±10.3 16431

Fast 181.9±12.8 5579

Soft 180.5±14.7 2704

5.2.2. Multi-style response to real life input query

We conducted experiments to evaluate the generalization capacity
of the close-loop style extraction and multi-style TTS system. We
recorded speech queries from multiple speakers by letting them read
the queries freely in a conference room. We then generated TTS
responses for each query by conditioning on its style embedding.

We randomly selected 10 query/responses pairs. We let the lis-
teners compare the multi-style TTS responses with the baseline TTS
responses, and select which response’s style matches the input query
better. Our results show that over 40% of test pairs have more than
60% matching rate; 10% of test pairs have less than 40% matching
rate; and 50% has around 50% matching rate. When the speaking
style of the input query is strong, the TTS response can match the
input style to a certain extent. Samples are at [25].

6. DISCUSSIONS

Due to the lack of anger and sadness samples in the internal dataset,
the learned styles in these classes are transferred from the class rep-
resentation in IEMOCAP dataset which may not represent the ideal
sad or angry speaking style for TTS. Also, we noticed F0 differs sig-
nificantly in the synthesis results for different classes, which may be
because the mean and variance of F0 are different among predicted
classes in TTS training data, as shown in Table 5. We also notice
that since the style embedding is a weighted representation of dif-
ferent styles, decreasing the weight of a certain style weakens that
style’s effects on the synthesis outputs, shown in [25]. In the future,
the performance of the multi-style expressive TTS system can be
further improved with a training dataset that contains more balanced
style labels and more significant emotion and prosody variations.



7. CONCLUSIONS

In conclusion, we developed an interactive TTS system that has
the potentials to synthesize matching speaking styles as the input
query. It is composed of a multi-modal style classifier and a neural-
network-based TTS system. The style classifier is jointly trained
using our labeled internal data and the IEMOCAP open source
dataset. With a limited amount of style labeled TTS data, we used
a semi-supervised approach to train the TTS system such that it
can generate controllable multi-style TTS responses in a reliable
manner.
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